Webpack 原理系列八:产物转译打包逻辑

本文深入 Webpack 源码,详细讨论了打包流程后半截 —— 从 chunk graph 生成一直
首页 新闻资讯 行业资讯 Webpack 原理系列八:产物转译打包逻辑

 回顾一下,在之前的文章《有点难的 webpack 知识点:Dependency Graph 深度解析》已经聊到,经过 「构建(make)阶段」  后,Webpack 解析出:

  • module 内容

  • module 与 module 之间的依赖关系图

而进入 「生成(「「seal」」)阶段」 后,Webpack 首先根据模块的依赖关系、模块特性、entry配置等计算出 Chunk  Graph,确定最终产物的数量和内容,这部分原理在前文《有点难的知识点:Webpack Chunk 分包规则详解》中也有较详细的描述。

本文继续聊聊 Chunk Graph 后面之后,模块开始转译到模块合并打包的过程,大体流程如下:

为了方便理解,我将打包过程横向切分为三个阶段:

  • 「入口」:指代从 Webpack 启动到调用 compilation.codeGeneration 之前的所有前置操作

  • 「模块转译」:遍历 modules 数组,完成所有模块的转译操作,并将结果存储到 compilation.codeGenerationResults  对象

  • 「模块合并打包」:在特定上下文框架下,组合业务模块、runtime 模块,合并打包成 bundle ,并调用 compilation.emitAsset  输出产物

这里说的 「业务模块」 是指开发者所编写的项目代码;「runtime 模块」 是指 Webpack  分析业务模块后,动态注入的用于支撑各项特性的运行时代码,在上一篇文章 Webpack 原理系列六:彻底理解 Webpack 运行时  已经有详细讲解,这里不赘述。

可以看到,Webpack 先将 modules 逐一转译为模块产物 —— 「模块转译」,再将模块产物拼接成 bundle ——  「模块合并打包」,我们下面会按照这个逻辑分开讨论这两个过程的原理。

一、模块转译原理

1.1 简介

先回顾一下 Webpack 产物:

上述示例由 index.js / name.js 两个业务文件组成,对应的 Webpack 配置如上图左下角所示;Webpack 构建产物如右边  main.js 文件所示,包含三块内容,从上到下分别为:

  • name.js 模块对应的转译产物,函数形态

  • Webpack 按需注入的运行时代码

  • index.js 模块对应的转译产物,IIFE(立即执行函数) 形态

其中,运行时代码的作用与生成逻辑在上篇文章 Webpack 原理系列六:彻底理解 Webpack 运行时 已有详尽介绍;另外两块分别为 name.js  、index.js 构建后的产物,可以看到产物与源码语义、功能均相同,但表现形式发生了较大变化,例如 index.js 编译前后的内容:

上图右边是 Webpack 编译产物中对应的代码,相对于左边的源码有如下变化:

  • 整个模块被包裹进 IIFE (立即执行函数)中

  • 添加 __webpack_require__.r(__webpack_exports__); 语句,用于适配 ESM 规范

  • 源码中的 import 语句被转译为 __webpack_require__ 函数调用

  • 源码 console 语句所使用的 name 变量被转译为  _name__WEBPACK_IMPORTED_MODULE_0__.default

  • 添加注释

那么 Webpack 中如何执行这些转换的呢?

1.2 核心流程

「模块转译」操作从 module.codeGeneration 调用开始,对应到上述流程图的:

总结一下关键步骤:

1.调用 JavascriptGenerator 的对象的 generate 方法,方法内部:

  • 遍历模块的 dependencies 与 presentationalDependencies 数组

  • 执行每个数组项 dependeny 对象的对应的 template.apply 方法,在 apply 内修改模块代码,或更新 initFragments  数组

2.遍历完毕后,调用 InitFragment.addToSource 静态方法,将上一步操作产生的 source 对象与 initFragments  数组合并为模块产物

简单说就是遍历依赖,在依赖对象中修改 module 代码,最后再将所有变更合并为最终产物。这里面关键点:

  • 在 Template.apply 函数中,如何更新模块代码

  • 在 InitFragment.addToSource 静态方法中,如何将 Template.apply 所产生的 side effect  合并为最终产物

这两部分逻辑比较复杂,下面分开讲解。

1.3 Template.apply 函数

上述流程中,JavascriptGenerator 类是毋庸置疑的C位角色,但它并不直接修改 module  的内容,而是绕了几层后委托交由 Template 类型实现。

Webpack 5 源码中,JavascriptGenerator.generate 函数会遍历模块的 dependencies 数组,调用依赖对象对应的  Template 子类 apply 方法更新模块内容,说起来有点绕,原始代码更饶,所以我将重要步骤抽取为如下伪代码:

复制

class JavascriptGenerator {     generate(module, generateContext) {         // 先取出 module 的原始代码内容         const source = new ReplaceSource(module.originalSource());         const { dependencies, presentationalDependencies } = module;         const initFragments = [];         for (const dependency of [...dependencies, ...presentationalDependencies]) {             // 找到 dependency 对应的 template             const template = generateContext.dependencyTemplates.get(dependency.constructor);             // 调用 template.apply,传入 source、initFragments             // 在 apply 函数可以直接修改 source 内容,或者更改 initFragments 数组,影响后续转译逻辑             template.apply(dependency, source, {initFragments})         }         // 遍历完毕后,调用 InitFragment.addToSource 合并 source 与 initFragments         return InitFragment.addToSource(source, initFragments, generateContext);     } }  // Dependency 子类 class xxxDependency extends Dependency {}  // Dependency 子类对应的 Template 定义 const xxxDependency.Template = class xxxDependencyTemplate extends Template {     apply(dep, source, {initFragments}) {         // 1. 直接操作 source,更改模块代码         source.replace(dep.range[0], dep.range[1] - 1, 'some thing')         // 2. 通过添加 InitFragment 实例,补充代码         initFragments.push(new xxxInitFragment())     } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

  • 29.

  • 30.

从上述伪代码可以看出,JavascriptGenerator.generate 函数的逻辑相对比较固化:

  1. 初始化一系列变量

  2. 遍历 module 对象的依赖数组,找到每个 dependency 对应的 template 对象,调用 template.apply  函数修改模块内容

  3. 调用 InitFragment.addToSource 方法,合并 source 与 initFragments 数组,生成最终结果

这里的重点是 JavascriptGenerator.generate 函数并不操作 module  源码,它仅仅提供一个执行框架,真正处理模块内容转译的逻辑都在 xxxDependencyTemplate 对象的 apply 函数实现,如上例伪代码中  24-28行。

每个 Dependency 子类都会映射到一个唯一的 Template 子类,且通常这两个类都会写在同一个文件中,例如 ConstDependency 与  ConstDependencyTemplate;NullDependency 与 NullDependencyTemplate。Webpack  构建(make)阶段,会通过 Dependency 子类记录不同情况下模块之间的依赖关系;到生成(seal)阶段再通过 Template 子类修改 module  代码。

综上 Module、JavascriptGenerator、Dependency、Template 四个类形成如下交互关系:

Template 对象可以通过两种方法更新 module 的代码:

  • 直接操作 source 对象,直接修改模块代码,该对象最初的内容等于模块的源码,经过多个 Template.apply  函数流转后逐渐被替换成新的代码形式

  • 操作 initFragments 数组,在模块源码之外插入补充代码片段

这两种操作所产生的 side effect,最终都会被传入 InitFragment.addToSource  函数,合成最终结果,下面简单补充一些细节。

1.3.1 使用 Source 更改代码

Source 是 Webpack 中编辑字符串的一套工具体系,提供了一系列字符串操作方法,包括:

  • 字符串合并、替换、插入等

  • 模块代码缓存、sourcemap 映射、hash 计算等

Webpack 内部以及社区的很多插件、loader 都会使用 Source 库编辑代码内容,包括上文介绍的 Template.apply  体系中,逻辑上,在启动模块代码生成流程时,Webpack 会先用模块原本的内容初始化 Source 对象,即:

复制

const source = new ReplaceSource(module.originalSource());
  • 1.

之后,不同 Dependency 子类按序、按需更改 source 内容,例如 ConstDependencyTemplate 中的核心代码:

复制

ConstDependency.Template = class ConstDependencyTemplate extends (   NullDependency.Template ) {   apply(dependency, source, templateContext) {     // ...     if (typeof dep.range === "number") {       source.insert(dep.range, dep.expression);       return;     }      source.replace(dep.range[0], dep.range[1] - 1, dep.expression);   } };
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

上述 ConstDependencyTemplate 中,apply 函数根据参数条件调用 source.insert 插入一段代码,或者调用  source.replace 替换一段代码。

1.3.2 使用 InitFragment 更新代码

除直接操作 source 外,Template.apply 中还可以通过操作 initFragments  数组达成修改模块产物的效果。initFragments 数组项通常为 InitFragment  子类实例,它们通常带有两个函数:getContent、getEndContent,分别用于获取代码片段的头尾部分。

例如 HarmonyImportDependencyTemplate 的 apply 函数中:

复制

HarmonyImportDependency.Template = class HarmonyImportDependencyTemplate extends (   ModuleDependency.Template ) {   apply(dependency, source, templateContext) {     // ...     templateContext.initFragments.push(         new ConditionalInitFragment(           importStatement[0] + importStatement[1],           InitFragment.STAGE_HARMONY_IMPORTS,           dep.sourceOrder,           key,           runtimeCondition         )       );     //...   }  }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

1.4 代码合并

上述 Template.apply 处理完毕后,产生转译后的 source 对象与代码片段 initFragments  数组,接着就需要调用 InitFragment.addToSource 函数将两者合并为模块产物。

addToSource 的核心代码如下:

复制

class InitFragment {   static addToSource(source, initFragments, generateContext) {     // 先排好顺序     const sortedFragments = initFragments       .map(extractFragmentIndex)       .sort(sortFragmentWithIndex);     // ...      const concatSource = new ConcatSource();     const endContents = [];     for (const fragment of sortedFragments) {         // 合并 fragment.getContent 取出的片段内容       concatSource.add(fragment.getContent(generateContext));       const endContent = fragment.getEndContent(generateContext);       if (endContent) {         endContents.push(endContent);       }     }      // 合并 source     concatSource.add(source);     // 合并 fragment.getEndContent 取出的片段内容     for (const content of endContents.reverse()) {       concatSource.add(content);     }     return concatSource;   } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

可以看到,addToSource 函数的逻辑:

  • 遍历 initFragments 数组,按顺序合并 fragment.getContent() 的产物

  • 合并 source 对象

  • 遍历 initFragments 数组,按顺序合并 fragment.getEndContent() 的产物

所以,模块代码合并操作主要就是用 initFragments 数组一层一层包裹住模块代码 source,而两者都在 Template.apply  层面维护。

1.5 示例:自定义 banner 插件

经过 Template.apply 转译与 InitFragment.addToSource  合并之后,模块就完成了从用户代码形态到产物形态的转变,为加深对上述 「模块转译」 流程的理解,接下来我们尝试开发一个 Banner  插件,实现在每个模块前自动插入一段字符串。

实现上,插件主要涉及 Dependency、Template、hooks 对象,代码:

复制

const { Dependency, Template } = require("webpack");  class DemoDependency extends Dependency {   constructor() {     super();   } }  DemoDependency.Template = class DemoDependencyTemplate extends Template {   apply(dependency, source) {     const today = new Date().toLocaleDateString();     source.insert(0, `/* Author: Tecvan */ /* Date: ${today} */ `);   } };  module.exports = class DemoPlugin {   apply(compiler) {     compiler.hooks.thisCompilation.tap("DemoPlugin", (compilation) => {       // 调用 dependencyTemplates ,注册 Dependency 到 Template 的映射       compilation.dependencyTemplates.set(         DemoDependency,         new DemoDependency.Template()       );       compilation.hooks.succeedModule.tap("DemoPlugin", (module) => {         // 模块构建完毕后,插入 DemoDependency 对象         module.addDependency(new DemoDependency());       });     });   } };
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

  • 29.

  • 30.

  • 31.

  • 32.

示例插件的关键步骤:

编写 DemoDependency 与 DemoDependencyTemplate 类,其中 DemoDependency  仅做示例用,没有实际功能;DemoDependencyTemplate 则在其 apply 中调用 source.insert 插入字符串,如示例代码第  10-14 行

  • 使用 compilation.dependencyTemplates 注册 DemoDependency 与 DemoDependencyTemplate  的映射关系

  • 使用 thisCompilation 钩子取得 compilation 对象

  • 使用 succeedModule 钩子订阅 module 构建完毕事件,并调用 module.addDependency 方法添加  DemoDependency 依赖

完成上述操作后,module 对象的产物在生成过程就会调用到 DemoDependencyTemplate.apply  函数,插入我们定义好的字符串,效果如:

感兴趣的读者也可以直接阅读 Webpack 5 仓库的如下文件,学习更多用例:

  • lib/dependencies/ConstDependency.js,一个简单示例,可学习 source 的更多操作方法

  • lib/dependencies/HarmonyExportSpecifierDependencyTemplate.js,一个简单示例,可学习  initFragments 数组的更多用法

  • lib/dependencies/HarmonyImportDependencyTemplate.js,一个较复杂但使用率极高的示例,可综合学习  source、initFragments 数组的用法

二、模块合并打包原理

2.1 简介

讲完单个模块的转译过程后,我们先回到这个流程图:

流程图中,compilation.codeGeneration 函数执行完毕 —— 也就是模块转译阶段完成后,模块的转译结果会一一保存到  compilation.codeGenerationResults 对象中,之后会启动一个新的执行流程 —— 「模块合并打包」。

「模块合并打包」 过程会将 chunk 对应的 module 及 runtimeModule 按规则塞进 「模板框架」 中,最终合并输出成完整的  bundle 文件,例如上例中:

示例右边 bundle 文件中,红框框出来的部分为用户代码文件及运行时模块生成的产物,其余部分撑起了一个 IIFE 形式的运行框架即为  「模板框架」,也就是:

复制

(() => { // webpackBootstrap     "use strict";     var __webpack_modules__ = ({         "module-a": ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {             // ! module 代码,         }),         "module-b": ((__unused_webpack_module, __webpack_exports__, __webpack_require__) => {             // ! module 代码,         })     });     // The module cache     var __webpack_module_cache__ = {};     // The require function     function __webpack_require__(moduleId) {         // ! webpack CMD 实现     }     /************************************************************************/     // ! 各种 runtime     /************************************************************************/     var __webpack_exports__ = {};     // This entry need to be wrapped in an IIFE because it need to be isolated against other modules in the chunk.     (() => {         // ! entry 模块     })(); })();
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

捋一下这里的逻辑,运行框架包含如下关键部分:

  • 最外层由一个 IIFE 包裹

  • 一个记录了除 entry 外的其它模块代码的 __webpack_modules__ 对象,对象的 key 为模块标志符;值为模块转译后的代码

  • 一个极度简化的 CMD 实现:__webpack_require__ 函数

  • 最后,一个包裹了 entry 代码的 IIFE 函数

「模块转译」 是将 module 转译为可以在宿主环境如浏览器上运行的代码形式;而 「模块合并」 操作则串联这些 modules  ,使之整体符合开发预期,能够正常运行整个应用逻辑。接下来,我们揭晓这部分代码的生成原理。

2.2 核心流程

在 compilation.codeGeneration 执行完毕,即所有用户代码模块与运行时模块都执行完转译操作后,seal 函数调用  compilation.createChunkAssets 函数,触发 renderManifest 钩子,JavascriptModulesPlugin  插件监听到这个钩子消息后开始组装 bundle,伪代码:

复制

// Webpack 5 // lib/Compilation.js class Compilation {   seal() {     // 先把所有模块的代码都转译,准备好     this.codeGenerationResults = this.codeGeneration(this.modules);     // 1. 调用 createChunkAssets     this.createChunkAssets();   }    createChunkAssets() {     // 遍历 chunks ,为每个 chunk 执行 render 操作     for (const chunk of this.chunks) {       // 2. 触发 renderManifest 钩子       const res = this.hooks.renderManifest.call([], {         chunk,         codeGenerationResults: this.codeGenerationResults,         ...others,       });       // 提交组装结果       this.emitAsset(res.render(), ...others);     }   } }  // lib/javascript/JavascriptModulesPlugin.js class JavascriptModulesPlugin {   apply() {     compiler.hooks.compilation.tap("JavascriptModulesPlugin", (compilation) => {       compilation.hooks.renderManifest.tap("JavascriptModulesPlugin", (result, options) => {           // JavascriptModulesPlugin 插件中通过 renderManifest 钩子返回组装函数 render           const render = () =>             // render 内部根据 chunk 内容,选择使用模板 `renderMain` 或 `renderChunk`             // 3. 监听钩子,返回打包函数             this.renderMain(options);            result.push({ render /* arguments */ });           return result;         }       );     });   }    renderMain() {/*  */}    renderChunk() {/*  */} }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

  • 29.

  • 30.

  • 31.

  • 32.

  • 33.

  • 34.

  • 35.

  • 36.

  • 37.

  • 38.

  • 39.

  • 40.

  • 41.

  • 42.

  • 43.

  • 44.

  • 45.

  • 46.

  • 47.

这里的核心逻辑是,compilation 以 renderManifest 钩子方式对外发布 bundle  打包需求;JavascriptModulesPlugin 监听这个钩子,按照 chunk 的内容特性,调用不同的打包函数。

上述仅针对 Webpack 5。在 Webpack 4 中,打包逻辑集中在 MainTemplate 完成。JavascriptModulesPlugin  内置的打包函数有:

  • renderMain:打包主 chunk 时使用

  • renderChunk:打包子 chunk ,如异步模块 chunk 时使用

两个打包函数实现的逻辑接近,都是按顺序拼接各个模块,下面简单介绍下 renderMain 的实现。

2.3renderMain函数

renderMain 函数涉及比较多场景判断,原始代码很长很绕,我摘了几个重点步骤:

复制

class JavascriptModulesPlugin {   renderMain(renderContext, hooks, compilation) {     const { chunk, chunkGraph, runtimeTemplate } = renderContext;      const source = new ConcatSource();     // ...     // 1. 先计算出 bundle CMD 核心代码,包含:     //      - "var __webpack_module_cache__ = {};" 语句     //      - "__webpack_require__" 函数     const bootstrap = this.renderBootstrap(renderContext, hooks);      // 2. 计算出当前 chunk 下,除 entry 外其它模块的代码     const chunkModules = Template.renderChunkModules(       renderContext,       inlinedModules         ? allModules.filter((m) => !inlinedModules.has(m))         : allModules,       (module) =>         this.renderModule(           module,           renderContext,           hooks,           allStrict ? "strict" : true         ),       prefix     );      // 3. 计算出运行时模块代码     const runtimeModules =       renderContext.chunkGraph.getChunkRuntimeModulesInOrder(chunk);      // 4. 重点来了,开始拼接 bundle     // 4.1 首先,合并核心 CMD 实现,即上述 bootstrap 代码     const beforeStartup = Template.asString(bootstrap.beforeStartup) + "\n";     source.add(       new PrefixSource(         prefix,         useSourceMap           ? new OriginalSource(beforeStartup, "webpack/before-startup")           : new RawSource(beforeStartup)       )     );      // 4.2 合并 runtime 模块代码     if (runtimeModules.length > 0) {       for (const module of runtimeModules) {         compilation.codeGeneratedModules.add(module);       }     }     // 4.3 合并除 entry 外其它模块代码     for (const m of chunkModules) {       const renderedModule = this.renderModule(m, renderContext, hooks, false);       source.add(renderedModule)     }      // 4.4 合并 entry 模块代码     if (       hasEntryModules &&       runtimeRequirements.has(RuntimeGlobals.returnExportsFromRuntime)     ) {       source.add(`${prefix}return __webpack_exports__;\n`);     }      return source;   } }
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

  • 19.

  • 20.

  • 21.

  • 22.

  • 23.

  • 24.

  • 25.

  • 26.

  • 27.

  • 28.

  • 29.

  • 30.

  • 31.

  • 32.

  • 33.

  • 34.

  • 35.

  • 36.

  • 37.

  • 38.

  • 39.

  • 40.

  • 41.

  • 42.

  • 43.

  • 44.

  • 45.

  • 46.

  • 47.

  • 48.

  • 49.

  • 50.

  • 51.

  • 52.

  • 53.

  • 54.

  • 55.

  • 56.

  • 57.

  • 58.

  • 59.

  • 60.

  • 61.

  • 62.

  • 63.

  • 64.

  • 65.

  • 66.

核心逻辑为:

1.先计算出 bundle CMD 代码,即 __webpack_require__ 函数

2.计算出当前 chunk 下,除 entry 外其它模块代码 chunkModules计算出运行时模块代码

3.开始执行合并操作,子步骤有:

  • 合并 CMD 代码

  • 合并 runtime 模块代码

  • 遍历 chunkModules 变量,合并除 entry 外其它模块代码

  • 合并 entry 模块代码

4.返回结果

总结:先计算出不同组成部分的产物形态,之后按顺序拼接打包,输出合并后的版本。

至此,Webpack 完成 bundle 的转译、打包流程,后续调用 compilation.emitAsset ,按上下文环境将产物输出到 fs  即可,Webpack 单次编译打包过程就结束了。

三、总结

本文深入 Webpack 源码,详细讨论了打包流程后半截 —— 从 chunk graph 生成一直到最终输出产物的实现逻辑,重点:

  • 首先遍历 chunk 中的所有模块,为每个模块执行转译操作,产出模块级别的产物

  • 根据 chunk 的类型,选择不同结构框架,按序逐次组装模块产物,打包成最终 bundle