监控 Python 内存使用情况和代码执行时间

在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。
首页 新闻资讯 行业资讯 监控 Python 内存使用情况和代码执行时间

我的代码的哪些部分运行时间最长、内存最多?我怎样才能找到需要改进的地方?

在开发过程中,我很确定我们大多数人都会想知道这一点,在本文中总结了一些方法来监控 Python 代码的时间和内存使用情况。

e1e027895104ca614c40718fdb8c789f5624ac.jpg

本文将介绍4种方法,前3种方法提供时间信息,第4个方法可以获得内存使用情况。

  • time 模块

  • %%time 魔法命令

  • line_profiler

  • memory_profiler

time 模块

这是计算代码运行所需时间的最简单、最直接(但需要手动开发)的方法。他的逻辑也很简单:记录代码运行之前和之后的时间,计算时间之间的差异。这可以实现如下:

复制

import time
 
 start_time = time.time() result = 5+2
 end_time = time.time() 
 print('Time taken = {} sec'.format(end_time - start_time))
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

下面的例子显示了for循环和列表推导式在时间上的差异:

复制

import time
 
 # for loop vs. list comp
 list_comp_start_time = time.time() result = [i for i in range(0,1000000)] list_comp_end_time = time.time() print('Time taken for list comp = {} sec'.format(list_comp_end_time - list_comp_start_time)) 
 result=[] for_loop_start_time = time.time() for i in range(0,1000000):     result.append(i) for_loop_end_time = time.time() print('Time taken for for-loop = {} sec'.format(for_loop_end_time - for_loop_start_time)) 
 list_comp_time = list_comp_end_time - list_comp_start_time
 for_loop_time = for_loop_end_time - for_loop_start_time
 print('Difference = {} %'.format((for_loop_time - list_comp_time)/list_comp_time * 100))
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

  • 16.

  • 17.

  • 18.

我们都知道for会慢一些。

复制

Time taken for list comp = 0.05843973159790039 sec
 Time taken for for-loop = 0.06774497032165527 sec
 Difference = 15.922795107582594 %
  • 1.

  • 2.

  • 3.

%%time 魔法命令

魔法命令是IPython内核中内置的方便命令,可以方便地执行特定的任务。一般情况下都实在jupyter notebook种使用。

在单元格的开头添加%%time ,单元格执行完成后,会输出单元格执行所花费的时间。

复制

%%time
 def convert_cms(cm, unit='m'):     '''Function to convert cm to m or feet''' if unit == 'm':         return cm/100 return cm/30.48
 
 convert_cms(1000)
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

结果如下:


复制

CPU times: user 24 µs, sys: 1 µs, total: 25 µs
 Wall time: 28.1 µs
 
 Out[8]: 10.0
  • 1.

  • 2.

  • 3.

  • 4.


这里的CPU times是CPU处理代码所花费的实际时间,Wall time是事件经过的真实时间,在方法入口和方法出口之间的时间。

line_profiler

前两个方法只提供执行该方法所需的总时间。通过时间分析器我们可以获得函数中每一个代码的运行时间。

这里我们需要使用line_profiler包。使用pip install line_profiler。

复制

import line_profiler
 
 def convert_cms(cm, unit='m'):     '''Function to convert cm to m or feet''' if unit == 'm':         return cm/100 return cm/30.48
 
 # Load the profiler
 %load_ext line_profiler
 
 # Use the profiler's magic to call the method
 %lprun -f convert_cms convert_cms(1000, 'f')
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

输出结果如下:

复制

Timer unit: 1e-06 s
 
 Total time: 4e-06 s
 File: /var/folders/y_/ff7_m0c146ddrr_mctd4vpkh0000gn/T/ipykernel_22452/382784489.py
 Function: convert_cms at line 1
 
 Line #     Hits         Time Per Hit   % Time Line Contents
 ==============================================================  1                                           def convert_cms(cm, unit='m'):      2                                               '''  3                                               Function to convert cm to m or feet  4                                               '''  5         1         2.0     2.0     50.0     if unit == 'm':      6                                                   return cm/100  7         1         2.0     2.0     50.0     return cm/30.48
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

  • 10.

  • 11.

  • 12.

  • 13.

  • 14.

  • 15.

可以看到line_profiler提供了每行代码所花费时间的详细信息。

  • Line Contents :运行的代码

  • Hits:行被执行的次数

  • Time:所花费的总时间(即命中次数x每次命中次数)

  • Per Hit:一次执行花费的时间,也就是说 Time =  Hits X Per Hit

  • % Time:占总时间的比例

可以看到,每一行代码都详细的分析了时间,这对于我们分析时间相当的有帮助。

memory_profiler

与line_profiler类似,memory_profiler提供代码的逐行内存使用情况。

要安装它需要使用pip install memory_profiler。我们这里监视convert_cms_f函数的内存使用情况。

复制

from conversions import convert_cms_f
 import memory_profiler
 
 %load_ext memory_profiler
 
 %mprun -f convert_cms_f convert_cms_f(1000, 'f')
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

convert_cms_f函数在单独的文件中定义,然后导入。结果如下:

复制

Line #   Mem usage   Increment Occurrences   Line Contents
 =============================================================  1     63.7 MiB     63.7 MiB           1   def convert_cms_f(cm, unit='m'):      2                                             '''  3                                             Function to convert cm to m or feet  4                                             '''  5     63.7 MiB     0.0 MiB           1       if unit == 'm':      6                                                 return cm/100  7     63.7 MiB     0.0 MiB           1       return cm/30.48
  • 1.

  • 2.

  • 3.

  • 4.

  • 5.

  • 6.

  • 7.

  • 8.

  • 9.

memory_profiler 提供对每行代码内存使用情况的详细了解。

这里的1 MiB (MebiByte) 几乎等于 1MB。1 MiB  = 1.048576 1MB

但是memory_profiler 也有一些缺点:它通过查询操作系统内存,所以结果可能与 python 解释器略有不同,如果在会话中多次运行 %mprun,可能会注意到增量列报告所有代码行为 0.0 MiB。这是因为魔法命令的限制导致的。

虽然memory_profiler有一些问题,但是它就使我们能够清楚地了解内存使用情况,对于开发来说是一个非常好用的工具。

总结

虽然Python并不是一个以执行效率见长的语言,但是在某些特殊情况下这些命令对我们还是非常有帮助的。


26    2023-01-27 15:28:04    开发 Python 内存